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Abstract 

The study presented Mult-, and Inverse-ridge regressions for data with or without multi-

collinearity for certain shrinkage factors. The study considered data of GDP of Nigeria as 

response, while exchange, unemployment, inflation and foreign direct investment were used as the 

predictors. The data were tested for outlier using Grubb’s test and the VIF, condition number, 

correlation and t-values were used to assess how the OLS and Ridge regressions were related with 

the proposed mult-and inverse-ridge regressions. The study revealed that whether or not, there is 

outlier or multicollinearity in a data set, the mult or inverse-ridge gives the same estimate of model 

parameters with the respective shrinkage factors of 1.000006 and 0.999999. These methods, 

overcame the barrier of testing for outlier or multicollinearity in a data set, it is advised that 

instead of testing, use any of the methods, Ridge, Sub-Ridge, Multi-Ridge and Inverse-Ridge 

methods with their respective shrinkage penalty. The OLS was not condemned, rather, it was used 

as the basis for judging these proposed methods.   

Keywords: Multi-ridge, Inverse-ridge, Ridge regressions, OLS, t-values. 

 

1. Introduction 

 

Regression analysis is like other inferential methodologies with the goal of drawing a random 

sample from a population and use it to estimate the properties of that population. In regression 

analysis, the coefficients in the regression equation are estimates of the actual population 

parameters, it is expected that these coefficient estimates be the best possible estimates. Supposing 

one requests an estimate for the cost of a service that is being considered. If the linear regression 

model satisfies the OLS assumptions, the procedure generates unbiased coefficient estimates that 

tend to be relatively close to the true population values (minimum variance). In fact, the Gauss-
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Markov theorem states that OLS produces estimates that are better than estimates from all other 

linear model estimation methods when the assumptions hold true. Ordinary Least Squares linear 

regression (OLS) is one of the most commonly and oldest used approaches in multiple regression. 

The estimator relates the dependent variable to a set of explanatory variables. In particular, if a 

model is constructed from variables with mean zero, then the estimator takes the covariance 

between the explanatory and dependent variables 𝑋′𝑋, and scales it by the inverse of the variance-

covariance matrix of the explanatory variables (𝑋′𝑋)−1. According to Onu, et al. (2021) and 

Shalabh (2012), a simple linear regression is an approach in statistics that is employed in the 

modeling of a linear surfaces. Regression analysis can be linear, nonlinear, second-order (quadratic 

or polynomial) regression. The model that is linear or nonlinear have been a major problem to 

decide as many will say that if the highest power of the unknown is one, it is linear and if the 

highest power is two, the model is quadratic and if more than two it is polynomial. Multiple linear 

regression is very sensitive to predictors that are in a configuration of near collinearity. When this 

is the case, the model parameters become unstable (large variances) and cannot be interpreted. 

From a mathematical standpoint, near-collinearity makes the 𝑋′𝑋 matrix ill-conditioned (with X 

the data matrix), that is, the value of its determinant is nearly zero, thus, attempts to calculate the 

inverse of the matrix result in numerical snags with uncertain final values. Exact collinearity occurs 

when at least one of the predictors is a linear combination of other predictors. Therefore, X is not 

a full rank matrix, the determinant of X is exactly zero, and inverting 𝑋′𝑋 is not simply difficult, 

it does not exist. When multicollinearity occurs, the least squares estimates remain unbiased and 

efficient. The problem is that the estimated standard error of the coefficient 𝛽𝑖 tends to be inflated. 

This standard error has a tendency to be larger than it would be in the absence of multicollinearity 

because the estimates are very sensitive to any changes in the sample observations or in the model 

specification. In other words, including or excluding a particular variable or certain observations 

may greatly change the estimated partial coefficient. If bi is larger than it should be, then the t-

value for testing the significance of 𝛽𝑖 is smaller than it should be. Thus, it becomes more likely 

to conclude that a variable𝑋𝑖 is not important in a relationship when, in fact, it is important. The 

Multiplicative ridge and Inverse ridge regressions, known as Mult-ridge and Inverse ridge were 

proposed as regression methods used in estimating parameters. This was as a result of the fact that 

Ordinary Least Square (OLS) was only better when the data is free from multicollinearity and 

outlier. Also, the data must be normally distributed. Ridge regression was introduced to handle 

such problem. This proposed methods, can estimate parameters with data with or without 

multicollinearity and outlier. The estimates give same results for some pronounced shrinkage 

factors. 

Regression analysis can be explained as a function between interested response variable and 

explanatory variables thought to be related on response (Ari & Onder, 2013). Least square method 

(LS) is a common method to estimate parameters in the regression model (Uckardes et al., 2012). 

Besides, the LS method is an unbiased method that is not only estimate parameter but also 

minimizing the error of the model. However, the LS method needs some assumptions which should 

be provided for the model reliable. If assumptions aren’t provided, the reliability of the model will 

decrease. Therefore, it will cause misinterpretations. To guarantee the usability of this method, the 
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assumptions must be valid such as that the errors are independent and normally distributed, and 

independent among explanatory variables. 

Ridge regression is a technique for analyzing multiple regression data that suffer from multi-

collinearity. When multi-collinearity occurs, least squares estimates are unbiased, but their 

variances are large so they may be far from the true value. By adding a degree of bias to the 

regression estimates, ridge regression reduces the standard errors. It is hoped that the net effect 

will be to give estimates that are more reliable. Another biased regression technique, known as 

principal components regression, but Ridge regression is the more popular of the two methods. 

Many procedures have been suggested in an attempt to overcome the effects of multicollinearity 

in regression analysis. Hoerl and Kennard (1970) proposed a class of biased estimator called ridge 

regression estimators as an alternative to the OLS estimator in the presence of collinearity. 

 

2. Materials and Methods 

 

Testing for Outliers in a Data set 

Grubb’s test was used to detect outlier since it detects one outlier at a time. It involves the following 

steps 

(i)  Order the data point from smallest to largest.  

(ii) Find the mean and standard deviation of the data set. 

(iii) Calculate the G-test statistic using one of the following equations. 

In test for outliers in this study, Grubbs’ test was employed and it is given as 

𝐺 = 𝑀𝑎𝑥
𝑖=1,...,𝑁

|𝑌𝑖−𝑌̅|

𝑠
          (1) 

𝑌𝑖is the sample data from a given population, here it represents any of GDP, FDI, Exchange rate, 

Inflation rate and Unemployment rate and  𝑌̅ is the sample mean, while  𝑠 is the sample standard 

deviation. 

The Grubbs test can also be given as a one-sided test as 

𝐺 =
𝑌̅−𝑌𝑚𝑖𝑛

𝑠
           (2) 

 or 

𝐺 =
𝑌𝑚𝑎𝑥−𝑌̅

𝑠
          (3) 

The test is based on the assumption of normality. It detects one outlier at a time, the outlier detected 

is removed from the data set and the test is repeated until no more outlier is detected. 

𝑌̂ =
Ʃ𝑌𝑖

𝑛
                                                                                                                           (4) 

Where, 𝑌̂ is the arithmetic mean 

𝑌𝑖 is individual data value 

n is the total number of data 

S=√
Ʃ(𝑌𝑖−𝑌̂)2

𝑛−1
    is the standard deviation                                                                      (5) 

Geometric mean is √𝑦1𝑥𝑦2𝑥𝑦3𝑥. 𝑥. 𝑥. 𝑦𝑁
𝑁                                                                  (6) 
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Harmonic mean is  H, M =
𝑁

(
1

𝑌1
+ 

1

𝑌2
+

1

𝑌3
+⋯+

1

𝑌𝑁
)
                                                            (7) 

Median is given as the size of 
(𝑁+1)

2

𝑡ℎ
𝑖𝑡𝑒𝑚                                                              (8) 

Testing for the Presence of Multi-collinearity in the Data Set 

Testing for multi-collinearity in the data sets, we employ the following methods. 

 

Variance Inflation Factor (VIF) 

Variance Inflation Factor according to Ayuya, (2021) and Deanna, (2018), the VIF is given as 

𝑉𝐼𝐹 =
1

1−𝑅2
           (9) 

Where Coefficient of Determination (𝑅2) is the R-squared value obtained from the regression of  

𝑋𝑖 on the other independent variables. It is seen, if the R-squared in the denominator gets closer 

and closer to one, the VIF will get larger and larger. The rule of thumb cut-off value for VIF is 10. 

Solving backwards, this translates into an R-squared value of 0.90. Hence, whenever the R-squared 

value between one independent variable and the rest is greater than or equal to 0.90, you will have 

to face multi-collinearity. 

According to Thompson, et al. (2017), coefficient of determination is given as 

𝑅2 =
𝑆𝑆𝑅

𝑆𝑆𝑇
=  

Ʃ(𝑦̂𝑖 − 𝑦̅)2

Ʃ(𝑦𝑖−𝑦̅)2 =1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
  = 1 −

Ʃ(𝑦𝑖 − 𝑦̂𝑖)2

Ʃ(𝑦𝑖−𝑦̅)2  

Condition Number and Condition Index 

In order to find the eigen values of a matrix, given a k x k matrix A, a k x k identity matrix 𝐼 and 

an eigen value ℷ, the following steps are to be followed: 

a) Be sure that the given matrix A is a square matrix k x k. 

b) Estimate the matrix. That is |𝐴 − ℷ𝐼| 
c) Find the determinant of the matrix. 

d) From the equation obtained|𝐴 − ℷ𝐼| = 0 

e) Calculate all the possible values of the equation. 

The square root of the ratio between the maximum and each eigenvalue (λ1, λ2, …, λk) is 

referred to as the condition index:  

𝑘𝑠 = √
𝜆𝑚𝑎𝑥

𝜆𝑠
, (𝑠 = 1,2, … , 𝑘)                   (10) 

The largest condition index is called the condition number and is the most widely used estimator 

to measure the strength of multi-collinearity called condition number by (Vinod & Uallh, 1981) 

is defined as  𝑘 =  √
λ𝑚𝑎𝑥

λ𝑚𝑖𝑛
                                                                                            (11) 
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Where λ𝑚𝑎𝑥 and λ𝑚𝑖𝑛  are the largest and smallest eigenvalues of the matrix 𝑋′𝑋 respectively. If 

λ𝑚𝑖𝑛 is zero, then is k is infinite, means perfect multi-collinearity among the independent 

variables and if λ𝑚𝑎𝑥 is equal to λ𝑚𝑖𝑛, then k is one, means the independent variables are said to 

be orthogonal. If k is between 30 to 100, it indicates a moderate to strong multi-collinearity. Any 

k value greater than 100 suggests severe multi-collinearity and larger value indicates serious 

multi-collinearity. 

Correlation 

This study is interested in the correlation that exist between two predictor variables as seen  

𝑟𝑥𝑖𝑥𝑗
=

𝑛 ∑ 𝑥𝑖𝑥𝑗−(∑ 𝑥𝑖)(∑ 𝑥𝑗)

√(𝑛 ∑ 𝑥𝑖
2−(∑ 𝑥𝑖)2)(𝑛 ∑ 𝑥𝑗

2−(𝑥𝑗)2)
        (12)  

Where  𝑥𝑖 and  𝑥𝑗 represent the 𝑖𝑡ℎand 𝑗𝑡ℎ predictor variables, the higher value of  𝑟 indicates higher 

presence of multicollinearity, while the lower value of 𝑟 indicates reduced presence of 

multucollinearity.  The formula of the correlation is as seen in Onu, et al. (2021).   

Determinant of a Matrix 

Key Points of determinant 

a) Let A be an m×n matrix and k an integer with 0<k≤m, and k≤n.  A k×k minor of A is the 

determinant of a k×k matrix obtained from A by deleting m-k rows and n-k columns. 

b) The first minor of a matrix Mij is formed by removing the ith row and jth column of the 

matrix, and retrieving the determinant of the smaller matrix. 

c) The cofactor of an element aij of a matrix A, written as Cij is defined as (−1)𝑖+jMij. 

Key Terms  

a) Cofactor: The signed minor of an entry of a matrix. 

b) Minor: The determinant of some smaller square matrix, cut down from matrix A by removing 

one or more of its rows or columns (Boundless, 2018). 

 

The Parameter Estimates of Ordinary Least Square 

This study will employ a five parameter probabilistic model given as 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽4𝑋4 + ԑ       (13) 

Where 𝑌 is the Gross Domestic Product (GDP) of Nigeria used as the response variable, while 

𝑋1is the Exchange rate, 𝑋2is the Unemployment rate, 𝑋3 represents the Inflation rate, and 𝑋4 is the 

Foreign Direct Investment (FDI) in Nigeria are the predictor variables, 𝛽0, 𝛽1, 𝛽2, 𝛽3 𝑎𝑛𝑑 𝛽4 are 

the unknown model parameters while ԑ is the stochastic disturbance or simply the error. The model 

in equation (13) is a multiple linear regression and it can be written in matrix form as: 

𝑌 = 𝑋𝛽 + ԑ           (14) 

http://www.iiardjournals.org/
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where 𝑋 is an 𝑁 × 𝑃 matrix, 𝑌 is an 𝑁 × 1 vectors of observed parameters and 𝛽 is a  

𝑃 × 1 vectors of unknown parameters and ԑ~𝑁(0, 𝛿2) is the error term. From the model in (13) 

we obtain the matrix 𝑋, the transpose of this matrix is obtained given as 𝑋′. The matrix 𝑋 is 

multiplied by its transpose to obtain 𝑋′𝑋 known as the information matrix. The inverse of 𝑋′𝑋 is 

obtained by using the formula 

(𝑋′𝑋)−1 =
𝐴𝑑𝑗𝑜𝑖𝑛𝑡(𝑋′𝑋)

det (𝑋′𝑋)
         (15) 

Where det (𝑋′𝑋) is the determinant of 𝑋′𝑋. 

The transpose of 𝑋 is multiplied by the response variable 𝑌 to obtain 𝑋′𝑌. In order to obtain the 

parameters of the model in (13), the Ordinary Least Square formula is applied and given as seen 

in (Iwundu & Onu, 2017, Onu, et al. 2021 and Kutner, et al.2005). 

𝛽̂ = (𝑋′𝑋)−1𝑋′𝑌          (16) 

The Parameter Estimates of Ridge Regression for varying Values of Shrinkage Penalty 

The Ridge Regression is like the Ordinary Least Square method; the only difference is the addition 

of the quantity KI to the information matrix to remove the effect of multi-collinearity in the 

analysis. K is a constant that takes on values not greater than 0.2 and the smaller the value of K, 

the better the Ridge parameters estimated and the higher the values of K above 0.2, the more the 

information matrix becomes singular matrix (Nduka & Ijomah, 2012). 

It is given by the formula 

𝛽̂ = (𝑋′𝑋 + 𝐾𝐼)−1𝑋′𝑌         (17) 

Where I is an identity matrix. 

 

The proposed Estimates of Multiplication and Inverse based Ridge Regressions for varying 

Shrinkage Penalty Values. 

 

The Parameter Estimates of Multiplicative based Ridge Regression for varying Shrinkage 

Penalty Values 

Another method to be tested in this research is the multiplicative ridge regression, it is given as 

𝛽̂ = (𝑋′𝑋 × 𝐾𝐼)−1𝑋′𝑌         (18) 

 

The Parameter Estimates of Inverse based Ridge Regression for varying Shrinkage Penalty 

Values 

Also, the inverse based ridge is given as 

http://www.iiardjournals.org/
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𝛽̂ = (𝑋′𝑋 + (𝐾𝐼)−1)−1𝑋′𝑌         (19) 

𝛽̂ = (𝑋′𝑋 − (𝐾𝐼)−1)−1𝑋′𝑌         (20) 

𝛽̂ = (𝑋′𝑋 × (𝐾𝐼)−1)−1𝑋′𝑌         (21) 

where, Equation (19), (20) and (21) are the Inverse Ridge regression in term of Additive, 

Subtractive and Multiplicative respectively    

 

Test of Significance of Combined Regression ANOVA for k Predictor Variables Multiple 

Linear Regression 

We present the F-test provided by the method of analysis of variance (ANOVA). For the general 

case of k independent variables and the test is base on the F-ratio given as  

F =
𝑆𝑆𝑅/𝑘

𝑆𝑆𝐸/(𝑛 − 𝑘 − 1) 
=

𝑀𝑆𝑅

𝑀𝑆𝐸
 

The overal variance in dependent (Y) can be splitted into  

Ʃ(𝑦𝑖 − 𝑦̅)2 = Ʃ(𝑦̂𝑖  −  𝑦̅)2 + Ʃ(𝑦𝑖  −  𝑦̂𝑖)
2 

𝑆𝑆𝑇 = 𝑆𝑆𝑅 + 𝑆𝑆𝐸 

where  

𝑆𝑆𝑇 is the total variation in dependent (Y). 

𝑆𝑆𝑅 is the regression variation in dependent (Y). 

𝑆𝑆𝐸 is the error (residual) variation.  

 

They are summarized in the table below. 

 

Table 1: Analysis of Variance (based onk Predictor Variables) 

Source   Degree of Freedom   Sum of Squares      Mean Square                   F-Ratio     P-Value 

Regression                  k                   SSR                         MSR=SSR/kFobs=MSR/MSE 

Error                        n-k-1                SSE                        MSE=SSE/(n-k-1)      --- 

Total                          n-1                 SST                              ---                         --- 

The F-ratio above described above is the test statistics for the null hypothesis 

H0: b1 = ... = bk = 0       (Y is not linearly associated with and of the independent variables) 

H1: Not all bj = 0           (At least one of the independent variables is associated with dependent 

variable.) 

From F-distribution with 𝑣1and 𝑣2 degree of freedom with selected significance level. A null 

hypothesis is accepted if the test statistics is less than the table value. Otherwise, null hypothesis 

is rejected. That is F Fobs k n k − − , , 1  

P-value: Area in the F-distribution to the right of Fobs. 

Table 2: Results of Varying Shrinkage Penalty Values on the Selected Economic Variables Data 
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K OLS Ridge Sub-Ridge Multi-Ridge Inverse-Ridge 

0.000000 13.132

3 

-0.4061 

-0.0372 

-2.6536 

0.0327 

13.132

3 

-0.4061 

-0.0372 

-2.6536 

0.0327 

 13.1323 

-0.4061 

-0.0372 

-2.6536 

0.0327 

 0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

 0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

 

0.000005    

13.132

3 

-0.4061 

-0.0372 

-2.6536 

0.0327 

tx  

13.1323 

-0.4061 

-0.0372 

-2.6536 

0.0327 

tx  

2626500

0 

-812000 

-74000 

-

5307000 

65000 

tx  

0.000006566 

-

0.000000020

3 

-0.000000019 

-0.000001327 

-0.000000016 

tx 

5.61 

-

0.73 

-

0.84 

-

3.60 

2.55 

5.61 

-0.73 

-0.84 

-3.60 

2.55 

1122435 

-1468354 

-16666667 

-

7.1911056 

5078125 

0.0000028 

-

0.00000003

7 

-

0.00000004

3 

-0.00018 

0.000125 

0.000007   13.132

3 

-0.4061 

-0.0372 

-2.6536 

0.0327 

 

-

0.73 

-

0.84 

-

3.60 

2.56 

13.1324 

-0.4062 

-0.0372 

-2.6536 

0.00327 

 

-0.73 

-0.84 

-3.60 

2.56 

1876000 

-58000 

-5300 

-379100 

4700 

801709.4 

04882.5 

-119369.4 

-513685.6 

367187.5 

9.0926 

1.2986 

0.0346 

2.1647 

0.0197 

3.89 

-2.35 

0.78 

-2.93 

1.54 

0.00005  13.131

9 

-0.4061 

-0.0372 

-2.6535 

5.61 

-

0.73 

-

0.83 

13.1328 

-0.4062 

-0.0372 

-2.6537 

0.0327 

5.61 

-0.73 

-0.84 

-3.60 

2.55 

262650 

-8120 

-740 

-53070 

650 

112243.6 

-14683.5 

-16666.7 

-71910.6 

50781.3 

0.0006566 

-0.0000203 

-0.000019 

-0.0001327 

0.0000016 

0.00028 

-0.000038 

-0.000043 

-0.00018 

0.000125 
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0.0327 -

3.60 

2.55 

0.99999  7.8091 

0.3414 

-0.0566 

-1.3887 

0.0213 

3.34 

0.62 

-

1.27 

-

1.88 

1.66 

44.3446 

-4.9423 

0.0870 

-

10.0989 

0.1008 

18.95 

-8.99 

1.96 

-13.83 

7.88 

13.1325 

-0.4061 

-0.0372 

-2.6536 

0.0327 

5.61 

-0.73 

-0.84 

-3.60 

2.55 

13.1322 

-0.4061 

-0.0372 

-2.6535 

0.0327 

5.61 

-0.73 

-0.84 

-3.60 

2.55 

0.999999  7.8091 

0.3414 

-0.0566 

-1.3887 

0.0213 

3.34 

0.62 

-

1.27 

-

1.88 

1.66 

44.3455 

-4.9425 

0.0870 

-

10.0991 

0.1008 

18.95 

1.70 

1.96 

-13.68 

7.88 

13.1324 

-0.4061 

-0.0372 

-2.6536 

0.0327 

5.61 

-0.73 

-0.84 

-3.60 

2.55 

13.1323 

-0.4061 

-0.0372 

-2.6536 

0.0327 

5.61 

-0.73 

-0.84 

-3.60 

2.55 

1.000006  7.8091 

0.3414 

-0.0566 

-1.3887 

0.0213 

3.34 

0.62 

-

1.27 

-

1.88 

1.66 

44.3463 

-4.9426 

0.0870 

-

10.0993 

0.1008 

18.95 

-8.94 

2.00 

-13.68 

7.88 

13.1323 

-0.4061 

-0.0372 

-2.6536 

-0.00327 

561 

-0.73 

-0.84 

-3.60 

2.56 

13.1324 

-0.4061 

-0.0372 

-2.6536 

0.0327 

5.6 

-0.73 

-0.84 

-360 

2.55 

 

Table 3: Comparison of known (Additive) and Multi-Ridge Results of Varying Shrinkage Penalty 

Values on the Selected Economic Variables Data. 

 

K OLS Ridge K Multi-Ridge 

0.000000 13.132

3 

13.132

3 

 0.999999 13.1325 

-0.4061 

5.61 

-0.73 
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-0.4061 

-0.0372 

-2.6536 

0.0327 

-0.4061 

-0.0372 

-2.6536 

0.0327 

-0.0372 

-2.6536 

0.0327 

-0.84 

-3.60 

2.55 

0.000005    

13.132

3 

-0.4061 

-0.0372 

-2.6536 

0.0327 

tx 1.000006  

13.1323 

-0.4061 

-0.0372 

-2.6536 

-0.00327 

tx 

5.61 

-

0.73 

-

0.84 

-

3.60 

2.55 

5.61 

-0.73 

-0.84 

-3.60 

2.56 

0.000007   13.132

3 

-0.4061 

-0.0372 

-2.6536 

0.0327 

 

-

0.73 

-

0.84 

-

3.60 

2.56 

1.000009 

 

13.1322 

-0.4061 

-0.0372 

-2.6535 

0.0327 

561 

-0.73 

-0.84 

-3.60 

2.56 

0.00005  13.131

9 

-0.4061 

-0.0372 

-2.6535 

0.0327 

5.61 

-

0.73 

-

0.83 

-

3.60 

2.55 

1.00001 13.1322 

-0.4061 

-0.0372 

-2.6535 

0.0327 

-0.73 

-0.84 

-3.60 

2.56 
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0.00008  13.131

6 

-0.4060 

-0.0372 

-2.6534 

0.0327 

 

-

0.73 

-

0.84 

-

3.60 

2.56 

1.00002 13.1321 

-0.4061 

-0.0372 

-2.6535 

0.0327 

 

-0.73 

-0.84 

-3.60 

2.56 

0.0005  13.127

8 

-0.4055 

-0.0372 

-2.6525 

0.0327 

5.61 

-

0.73 

-

0.83 

-

3.59 

2.55 

1.00003 13.1319 

-0.4061 

-0.0372 

-2.6535 

0.0327 

 

-0.73 

-0.84 

-3.60 

2.56 

0.0009  13.124

2 

-0.4050 

-0.0373 

-2.6516 

0.0327 

 

-

0.73 

-

0.84 

-

3.59 

2.55 

1.00008 13.1313 

-0.4061 

-0.0372 

-2.6534 

0.0327 

 

-0.73 

-0.84 

-3.60 

2.56 

0.005  13.087

0 

-0.3997 

-0.0374 

-2.6428 

0.0326 

5.59 

-

0.72 

-

0.84 

-

3.58 

1.00009 13.1312 

-0.4061 

-0.0372 

-2.6533 

0.0327 

 

-0.73 

-0.84 

-3.60 

2.56 
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2.55 

Discussion of Results 

The results in table 2 revealed that for the shrinkage factor k=0.000000, the OLS, Ridge and Sub-

ridge regressions have equal coefficients, while the proposed Mult-Ridge and Inverse-Ridge have 

coefficients of zeros all through. For the shrinkage factor k=0.000005, the Ridge and Sub-Ridge 

regressions maintained the same coefficients as with the shrinkage of k=0.000000, while, the Mult-

Ridge and Inverse-Ridge regressions parameters increased out of bound, likewise its t-values. As 

the shrinkage factor k increased to k=0.000007, the Ridge and Sub-Ridge regressions parameters 

differed in the gradients of exchange rate from -0.4061 to -0.4062, also, they differed in the 

gradients of the FDI, while, the Ridge regression was equal to the OLS for the shrinkage 

k=0.000007. Hence, k=0.000007 was proposed as the shrinkage penalty for Ridge regression. That 

is to say, whether the data has multicollinearity or not, the Ridge regression will have equal 

estimation of parameters with the OLS when the shrinkage penalty k of the Ridge regression is 

0.000007. This serves as a big advantage to researchers, especially those that deal on big data, 

because, needless of testing for multicollinearity, as it could be time consuming. As the k increases 

further, the Ridge and the Sub-Ridge estimates continue to differ, even more visibly away from 

the estimates of the OLS, while the Mult-Ridge and Inverse-Ridge estimates become closer to each 

other and tending towards the OLS estimates. As the k increased to k=0.999999, the Inverse-Ridge 

estimates became equal to the OLS, and the value k=0.999999 was proposed as the shrinkage 

penalty for Inverse-Ridge. As k increased to 1.000006, the Mult-Ridge estimates became equal to 

the OLS, as such, k=1.000006 was proposed as the shrinkage penalty for Mult-Ridge regression. 

The implications of these findings, was to provide diverse method of solving regression problem 

instead of using just OLS when there is no multicollinearity in the data or using Ridge when there 

is multicollinearity in the data set(s). Also, the methods, overcomes the barrier of testing for 

multicollinearity in a data, instead, use any of the methods, Ridge, Sub-Ridge, Multi-Ridge and 

Inverse-Ridge methods with their respective shrinkage penalty. The OLS was not condemned, 

rather, it was used as the basis for judging these methods.   

Conclusion  

The study concludes that multiplicative (mult-ridge) and Inverse-ridge regression methods should 

be applied with 1.000006 and 0.999999 shrinkage penalty respectively in order to overcome the 

extra work of testing the data for outlier and multicollinearity. With the proposed shrinkage value, 

the proposed methods yield same results with the OLS, whether with or without outlier or 

multicollinearity. 

Contribution to knowledge 

The study was able to show that, needless of testing for outlier or multicollinearity in a data set, 

when trying to use regression approach in estimating parameters of a model. Instead, used either 

of mult-ridge with 1.000006 shrinkage penalty or inverse-ridge with 0.999999 shrinkage penalty. 
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